—

Distributed
Computer

P

CHAITANYA

WOMEN'’S COLLEGE

C AFFILIATED TO ANDH

RA UNIVERSITY

® Computer hardware prices falling, power
Increasing
O If cars the same, Rolls Royce would cost 1 dollar
and get 1 billion miles per gallon (with 200 page
manual to open the door)
® Network connectivity increasing
O Everyone is connected with fat pipes
@ It is easy to connect hardware together
@® Definition: a distributed system is

O A collection of independent computers that
apbears to its tusers as a sinale coherent

Machine A

Machine B

Machine C

Examples:

Distributed applications

- The Web

- Processor Pool

Middleware service

- Airline

Local OS

Local OS

Local OS Reservation

MNetwork

A distributed system organized as middleware.

Users can interact with the system in a consistent way,
regardless of where the interaction takes place

Transparency Description
Hide differences in data representation and how a
Access :
resource is accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
Relocation Hide that a resource may be moved to another
location while in use
Replication Hide that a resource may be shared by several
P competitive users
Concurrenc Hide that a resource may be shared by several
y competitive users
Failure Hide the failure and recovery of a resource

Persistence

Hide whether a (software) resource is in memory or on

disk

*
{
o
o

®
®
Y Distributed OS .
Item Networ | Middleware
* Multiproc. Multicomp. k OS -based OS
Degree of transparency | Very High High Low High
Same OS on all nodes Yes Yes No No
Number of copies of OS |1 N N N
: S Shared : Model
Basis for communication Messages Files .
memory specific
Global,
Resource management Global, central | 7. .. Per node | Per node
distributed
Scalability No Moderately Yes Varies
Openness Closed Closed Open Open

v

® Thus far, have not talked about organization
of processes
O Again, many choices but most agree upon client-
® If caf§'d® so without connection, quite simple
® If underlying connection is unreliable, not trivial
® Resend? What if receive twice

® Use TCP for reliable connection (apps on
Internet)

® Not always appropriate for high-speed LAN
connection (4513)

Client

Wait for result

Request

Provide service

/= Definitions needed by clients and servers. i |

#define TRUE 1

#define MAX _PATH P2 /~ maximum length of file name 7
#define BUF _SIZE 1024 /* how much data to transfer at once */
#define FILE _SERVER 243 /™ file server’'s network address =i

/= Definitions of the allowed operations */

#define CREATE = 1 /™ create a new file *f
#define READ = /™ read data from a file and return it =F
#define WRITE 3 /™~ write data to a file =/
#define DELETE < /= delete an existing file i
/~ Error codes. */

#define OK 0 /* operation performed correctly =
#define E_BAD_OPCODE -1 /= unknown operation requested 7§
#define E_BAD_PARAM -2 /™ error in a parameter o
#define E_10 -3 /* disk error or other /O error v 4

/* Definition of the message format. ~/
struct message {

long source; /m sender’s identity e
long dest; /™ receiver’s identity =
long opcode; /~ requested operation & i
long count; /= number of bytes to transfer =
long offset; /~ position in file to start /O =/
long result; /™ result of the operation */
char name[MAX_PATH]; /~ name of file being operated on */

char data[BUF _SIZE]; /* data to be read or written =

#include <header.h>
void main(void) {

struct message mil, m2; /* incoming and outgoing messages
intr; /* result code
while(TRUE) { [* server runs forever
receive(FILE_SERVER, &mi); /* block waiting for a message
switch(ml.opcode) { /* dispatch on type of request
case CREATE: r=do_create(&ml, &m2); break;
case READ: r = do_read(&ml, &m2); break;

case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r=do_delete(&ml, &m2); break;

default: r= E_BAD_OPCODE;
}
m2.result =r; /* return result to client
send(ml.source, &m2); /* send reply

}

i &
*/

i
*/
*/

i
g

#include <header.h> =
int copy(ciiar *src, char *dst){ I procedure to copy file using the server ¥/

struct message ml; message buffer E

long paosition; current file position 4

long client = 110; * client’s address 2l

initialize(); /* prepare for execution */

position = 0;

do{
ml.opcode = READ,; /* operation is a read */
ml.offset = position; /* current position in the file */
ml.count = BUF_SIZE; /* how many bytes to read”/
strcpy(&ml.name, src); I* copy name-of file to be read to message */
send(FILESERVER, &ml); /* send the message to the file server i
receive(client, &ml); /* block waiting for the reply - */
/* Write the data just received to the destination file. */
ml.opcode = WRITE; /* operation is a write */
mil.offset = position; /* current position in the file */
mi.count = ml.result; /* how many bytes to write "
strcpy(&ml.name, dst); /* copy name of file to be written to buf */
send(FILE_SERVER, &ml); /* send the message to the file server */
receive(client, &ml); /* block waiting for the reply */
position += ml.result; /* ml.result is number of bytes written *

} while(ml.result > 0); /* iterate until done */

return(ml.result >= 0 ? OK : ml result); /* return OK or error code */

‘ User interface

HTML page
Keyword expression containing list

HTML

generator

Query % Ranked list
generator of page titles

Ranking

Database queries component

Database
with Web pages

Web page titles
with meta-information

User-interface
level

Processing
level

Data level

v

+

2

® Example of an Internet search engine
O Ul on client
O Processing can be on client or server
O Data level is server, keeps consistency

User interface

User interface

Application

Database

(@)

Client machine

*
(

‘ User interface User interface User interface User interface
Application Application Application
‘\,,/é’ ‘ Database
Application _Application \ /,/”:_q !
Database ‘ Database ‘ Database Database
Server machine
(b) (c) (d) (e)

User interface Wait for result
(presentation) T

Request Return
operation result
L Wait for data
Application M T — o __
server
Request data Return data
Database '/
server »

	Distributed Computer Systems
	The Rise of Distributed Systems
	Definition of a Distributed System
	Transparency in a Distributed System
	Comparison between Systems
	Clients and Servers
	Slide 7
	Example Client and Server: Header
	Example Client and Server: Server
	Example Client and Server: Client
	Client-Server Implementation Levels
	Slide 12
	Slide 13
	Slide 14

