MACHINES

TMs model the computing capability of a general purpose computer, which informally can be
described as:

Effective procedure
Finitely describable

Well defined, discrete, “mechanical” steps
Always terminates
Computable function

A function computable by an effective procedure

TMs formalize the above notion.

Church-Turing Thesis: There is an effective procedure for solving a problem if and only if there is
a TM that halts for all inputs and solves the problem.

There are many other computing models, but all are equivalent to or subsumed by TMs. There is no
more powerful machine (Technically cannot be proved).

DFAs and PDAs do not model all effective procedures or computable functions, but only a
subset.

Deterministic Turing Machine (DTM)

B

B

Finite
Control

If read O, write 1, HALT'!
If read e write 1, HALT!

tfjrfajoja) |]

If read O, write 1, HALT'!
If read e write 1, HALT!!

If read O, write 1, HALT'!
If read e write 1, HALT!

ojof1jol1] | | |

If read O, write 1, HALT'!
If read e write 1, HALT!!

ojojofol1] | | |

If read 1, write 0, go right, repeat.

If read e write 1, HALT

ojojojofO1] | | |

If read 1, write 0, go right, repeat.
If read O, write 1,
If read e write 1, HALT'!

ojojojofrja] | | |

So the successor’s output on 111101 was
000011 which 1s the reverse binary
representation of 48.

Similarly, the successor of 127 should be 128:

If read O, write 1, HALT'!
If read e write 1, HALT!

tjtfafafaja] | |

If read O, write 1, HALT'!
If read e write 1, HALT!

If read O, write 1, HALT!
If read e write 1, HALT!

Ojo PN j1l11] | |

If read O, write 1, HALT'!
If read e write 1, HALT!

ojojof1]1]1] | |

If read O, write 1, HALT!
If read e write 1, HALT!

ojojojofsts] | |

If read O, write 1, HALT!
If read e write 1, HALT!

ojojojojof1] | |

If read O, write 1, HALT'!
If read e write 1, HALT!

If read 1, write O, go right, repeat.
If read O, write 1, HALT!

If read 1, write O, go right, repeat.
If read O, write 1, HALT'!

If read e write 1,

|0|0‘0‘0|0 0‘0|1| ‘ \

Two-way, infinite tape, broken into cells, each containing one symbol.

Two-way, read/write tape head.

An input string is placed on the tape, padded to the left and right infinitely with blanks, read/write head is
positioned at the left end of input string.

Finite control, i.e., a program, containing the position of the read head, current symbol being scanned, and the
current state.

In one move, depending on the current state and the current symbol being scanned, the TM
1) changes state,

2) prints a symbol over the cell being scanned, and

3) moves its’ tape head one cell left or right.

Many modifications possible, but Church-Turing declares equivalence of all.

Formal Definition of a DTM

* ADTM s a seven-tuple:

M=(Q,2T,56,q,B,F)

Q A finite set of states

2 A finite input alphabet, which is a subset of - {B}

r A finite tape alphabet, which is a strict superset of 2

B A distinguished blank symbol, which is in T

d, The initial/starting state, g, is in Q

F A set of final/accepting states, which is a subset of Q

o A next-move function, which is a mapping (i.e., may be undefined) from

QxIr—>QxTrx{LR}

Intuitively, 6(q,s) specifies the next state, symbol to be written, and the direction of tape head
movement by M after reading symbol s while in state g.

21

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages

Context-Sensitive Languages

Context-Free Languages - €

Regular Languages - €

The Halting Problem

* Definition: A decision problem is a problem having a yes/no answer (that one presumably
wants to solve with a computer). Typically, there is a list of parameters on which the problem
is based.

* Given a list of numbers, is that list sorted?

* @Given a number X, is x even?
* Given a C program, does that C program contain any syntax errors?
* Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that interesting.
However, from a theoretical perspective they are for the following two reasons:

* Decision problems are more convenient/easier to work with when proving complexity results.
* Non-decision counter-parts can always be created & are typically at least as difficult to solve.

	Slide 1
	Slide 2
	Deterministic Turing Machine (DTM)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Formal Definition of a DTM
	Slide 22
	The Halting Problem

