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What are
Sl,l‘bgroupsp

o Definition: A subgroup is a subset

the same operation. {ﬂ,__@.?.z
- o

- Emphasize that a subgrou,p inherits the g
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group. 9
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Propert1es

A subgroup is a subset of 21 , &ﬂ-

same properties of the larger T
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closure, identity, and i 1nverse axi
£
the subgroup of even number

and the subgroup of symmetnq.
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Explam the Tt ¢
Closure The mwsm up 1
gToup oper
» Identity: The SUb rouj
element of the group.. ..

. Inverses: Every element in the subgroup must have
its inverse in the subgroup.
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Importance of subgm ups
Kiks X+y+

Present additional examples of suhgrg)glvs_*_ ?
. 'T'he cyclic subgroups in the group of in gers or modular a

. The rotational subgroups in the group of symmetries of a regular gtﬂm
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Introduce th\e
and Lagrange

. Explain that cosets partm@ﬁ:
sets, allowing for the s’cudy mw '
State Lagrange's Theoger__n Ir al
of any subgroup d1V1dé es th
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Lagrange's 'Theorem

Statement: The order of the subgroup of a {inite group divides order of a group.

Proof: let (G,.)be a group,(H,.)be a sub group of G

» (= 1s finite H is also finite

If H=G
O(H)=0(G)
= O(H)/O(G)
ItH#G
Then O(H) O(G)
letO(H)=m and O(G)=n
let H= {h1,hg,hg.......... hm} be the m distinct elements of H
in G
Leta G
Ha={hia,h2a,hga.......hna}be the elements of Ha
If possible suppose that
hiazhja fori#j
hi=hj
this is a contradiction for hizhj for i#j
our supposition 18 wrong
All the elements of Ha are distinct
s O(Ha)=m

Every right coset of H in G has exactly same m number
of elements

since G is finite ,the distinct right cosets of H in G is also
finite

let it be K
Hai,Haao......... Ham are the distinct right cosets of H in G
O(Ha1)=O(Ha2)=........... O(Hak)=m

aa the right coset of H in G are disjoint

G=HaiUHa2U......... UHak
O(G)=0O(HaiUHazU........... UHak)
O(G)=0(Ha1)+O(Hag2)+........ +O(Hak)

n=m+m-+......... +m(ktimes)

O(H)/O(G)

. 'The order of a subgroup of a finite group divdes the

order of a group




<a.-

Suppose HK is a subgroup of G
Claim : HK=KH
Consider HK=(HK)

G0k o

KH .
Conversly suppose that HK=KH

Claim:HK is a subgroup of G B8
[t is enough to prove that (HK)(HK)
(By known theorem ,H is a subgroupn of G Then HI'{{ }E‘

Consider £ 'Z

(HK)(HK) =(HK)(K 'H)
= (KH)H ) . “* T 2

_ K(HH ) #3373

HK(HK ' )=-KH G
(HK)(HK ' )=HK ).
HK is a subgroup of G - Y
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If it is any subgroup of G then H= H.lr"“
Proof :Let Gpeagroupof G
Claim:H=-H
It is enough to  prove that
HCH 'and H  CH
LetxeH
= H is a subgroup of G
H itself a group
by inverse x ‘e H
(x)le H! ._
xeH™! L
HCop =y (1)
LetyeH™
y'€H
y €H
By inverse (y 1) e H
yveH
H'CH —@
From 1 and 2
Ererf

Hence proved.




Conclusion -

» Recap the key points disg dssed ahot subgroups.
» Reinforce the idea that subg@ups prov1de 1n51ghts

into the structure and be;‘ av1of\
-’1@1@3 . = _ -

» Encourage further eXplo . eiUO.n_Q
its applications. T
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